RIEMANNIAN GEOMETRY
 EXCERCISE 5

1. Recall the Koszul formula states that: for any $X, Y, Z \in \Gamma(T M)$, we have

$$
\begin{aligned}
2\left\langle\nabla_{X} Y, Z\right\rangle= & X\langle Y, Z\rangle+Y\langle Z, X\rangle-Z\langle X, Y\rangle \\
& -\langle X,[Y, Z]\rangle+\langle Y,[Z, X]\rangle+\langle Z,[X, Y]\rangle
\end{aligned}
$$

Suppose we know the following fact: There exist three vector files $\mathbf{i}, \mathbf{j}, \mathbf{k}$ on $\mathbb{S}^{3} \subset \mathbb{R}^{4}$ which are linearly independent at any point of \mathbb{S}^{3}, such that

$$
[\mathbf{i}, \mathbf{j}]=\mathbf{k},[\mathbf{j}, \mathbf{k}]=\mathbf{i},[\mathbf{k}, \mathbf{i}]=\mathbf{j} .
$$

Assign to \mathbb{S}^{3} a Riemmannian metric g such that $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are orthonormal at any point. Calculate the Levi-Civita connection ∇ of $\left(\mathbb{S}^{3}, g\right)$.
2. (Isometries preserve Levi-Civita connections) Let $\left(M_{1}, g_{1}\right),\left(M_{2}, g_{2}\right)$ be two Riemannian manifolds. Let $\nabla^{(1)}, \nabla^{(2)}$ be their Levi-Civita connections, respectively. Suppose $\varphi: M_{1} \rightarrow M_{2}$ be an isometry. Prove that for any $X, Y \in \Gamma\left(T M_{1}\right)$, we have

$$
d \varphi\left(\nabla_{X}^{(1)} Y\right)=\nabla_{d \varphi(X)}^{(2)} d \varphi(Y)
$$

3. (Induced connection) Let M, N be two smooth manifold and $\varphi: N \rightarrow M$ be a smooth map. A vector field along φ is an assignment

$$
x \in N \mapsto T_{\varphi(x)} M .
$$

Let $\left\{E_{i}\right\}_{i=1}^{n}$ be a frame field in a neighborhood U of $\varphi(x) \in M$. Then for any $y \in \varphi^{-1}(U)$, we have

$$
V(x)=V^{i}(x) E_{i}(\varphi(x))
$$

Let $u \in T_{x} N$. We define

$$
\begin{equation*}
\widetilde{\nabla}_{u} V:=u\left(V^{i}\right)(x) E_{i}(\varphi(x))+V^{i}(x) \nabla_{d \varphi(u)} E_{i}, \tag{0.1}
\end{equation*}
$$

where ∇ is an affine connection on M.
(i) Check that $\widetilde{\nabla}_{u} V$ is well defined, i.e., 0.1 is independent of the choices of $\left\{E_{i}\right\}$.
(ii) Let g be a Riemannian metric on M. Prove that if ∇ on M is compatible with g, then for vector fields V, W along φ, and $u \in T_{x} N$, we have

$$
u\langle V, W\rangle=\left\langle\widetilde{\nabla}_{u} V, W\right\rangle+\left\langle V, \widetilde{\nabla}_{u} W\right\rangle
$$

(iii) Prove that if ∇ on M is torsion free, then for any $X, Y \in \Gamma(T N$, we have

$$
\widetilde{\nabla}_{X} d \varphi(Y)-\widetilde{\nabla}_{Y} d \varphi(X)-d \varphi([X, y])=0
$$

4. (Variation of energy functional: A coordinate-free calculation) Let $\gamma:[a, b] \rightarrow$ M be a smooth curve, and

$$
\alpha:(-\epsilon, \epsilon) \times[a, b] \rightarrow M,(s, t) \mapsto \alpha(s, t) .
$$

be a variation, where (M, g) is a Riemmanian manifold with a Levi-Civita connection.

Recall the energy functional of a curve γ is

$$
E(\gamma):=\frac{1}{2} \int_{a}^{b}\left\langle d \gamma\left(\frac{\partial}{\partial t}\right), d \gamma\left(\frac{\partial}{\partial t}\right)\right\rangle d t
$$

For convenience, we denote by

$$
W(t):=d \alpha\left(\frac{\partial}{\partial s}\right)(0, t), \text { and } \dot{\gamma}(t):=d \gamma\left(\frac{\partial}{\partial t}\right)
$$

Prove the following variation formula:

$$
\left.\frac{d}{d s}\right|_{s=0} E(\bar{\alpha}(s))=-\int_{a}^{b}\left\langle W(t), \frac{D \dot{\gamma}}{d t}(t)\right\rangle d t-\left\langle W(a), \frac{D \dot{\gamma}}{d t}(a)\right\rangle+\left\langle W(b), \frac{D \dot{\gamma}}{d t}(b)\right\rangle,
$$

where $\bar{\alpha}(s):=\alpha(s, \cdot): t \mapsto \alpha(s, t)$.
5. Let S^{n} be the sphere with the induced metric g from the Euclidean metric in \mathbb{R}^{n+1}. We denote by $\bar{\nabla}$ the canonical Levi-Civita connection on \mathbb{R}^{n+1}. For any $X, Y \in \Gamma\left(T \mathbb{S}^{n}\right)$, one can extend X, Y to smooth vector field \bar{X}, \bar{Y} on \mathbb{R}^{n+1}, at least near \mathbb{S}^{n}.

By locality, the vector $\bar{\nabla} \bar{X} \bar{Y}$ at any $p \in \mathbb{S}^{n}$ depends only on $\bar{X}(p)=X(p)$ and the vectors $\bar{Y}(q)=Y(q)$ for $q \in \mathbb{S}^{n}$. That is, $\bar{\nabla} \bar{X} \bar{Y}$ is independent of the extension of X, Y we choose. So we will write $\bar{\nabla}_{X} Y$ instead of $\overline{\nabla_{X}} \bar{Y}$ at points on \mathbb{S}^{n}.

We define $\nabla_{X} Y$ to be the orthogonal projection of $\bar{\nabla}_{X} Y$ onto the tangent space of \mathbb{S}^{n}, i.e.,

$$
\nabla_{X} Y:=\bar{\nabla}_{X} Y-\left\langle\bar{\nabla}_{X} Y, \mathbf{n}\right\rangle \mathbf{n},
$$

where \mathbf{n} is the unit out normal vector on \mathbb{S}^{n}.
(i) Prove that ∇ is an affine connection on \mathbb{S}^{n}.
(ii) Prove that ∇ is the Levi-Civita connection of $\left(\mathbb{S}^{n}, g\right)$.

