RIEMANNIAN GEOMETRY EXCERCISE 5

1. Recall the Koszul formula states that: for any $X, Y, Z \in \Gamma(TM)$, we have

$$\begin{split} 2\langle \nabla_X Y, Z \rangle = & X\langle Y, Z \rangle + Y\langle Z, X \rangle - Z\langle X, Y \rangle \\ & - \langle X, [Y, Z] \rangle + \langle Y, [Z, X] \rangle + \langle Z, [X, Y] \rangle \end{split}$$

Suppose we know the following fact: There exist three vector files $\mathbf{i}, \mathbf{j}, \mathbf{k}$ on $\mathbb{S}^3 \subset \mathbb{R}^4$ which are linearly independent at any point of \mathbb{S}^3 , such that

$$[\mathbf{i},\mathbf{j}] = \mathbf{k}, \ [\mathbf{j},\mathbf{k}] = \mathbf{i}, \ [\mathbf{k},\mathbf{i}] = \mathbf{j}.$$

Assign to \mathbb{S}^3 a Riemmannian metric g such that $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are orthonormal at any point. Calculate the Levi-Civita connection ∇ of (\mathbb{S}^3, g) .

2. (Isometries preserve Levi-Civita connections) Let (M_1, g_1) , (M_2, g_2) be two Riemannian manifolds. Let $\nabla^{(1)}$, $\nabla^{(2)}$ be their Levi-Civita connections, respectively. Suppose $\varphi : M_1 \to M_2$ be an isometry. Prove that for any $X, Y \in \Gamma(TM_1)$, we have

$$d\varphi\left(\nabla_X^{(1)}Y\right) = \nabla_{d\varphi(X)}^{(2)}d\varphi(Y).$$

3. (Induced connection) Let M,N be two smooth manifold and $\varphi:N\to M$ be a smooth map. A vector field along φ is an assignment

$$x \in N \mapsto T_{\varphi(x)}M.$$

Let $\{E_i\}_{i=1}^n$ be a frame field in a neighborhood U of $\varphi(x) \in M$. Then for any $y \in \varphi^{-1}(U)$, we have

$$V(x) = V^{i}(x)E_{i}(\varphi(x)).$$

Let $u \in T_x N$. We define

(0.1)
$$\widetilde{\nabla}_u V := u(V^i)(x)E_i(\varphi(x)) + V^i(x)\nabla_{d\varphi(u)}E_i$$

where ∇ is an affine connection on M.

- (i) Check that $\widetilde{\nabla}_u V$ is well defined, i.e., (0.1) is independent of the choices of $\{E_i\}$.
- (ii) Let g be a Riemannian metric on M. Prove that if ∇ on M is compatible with g, then for vector fields V, W along φ , and $u \in T_x N$, we have

$$u\langle V,W\rangle = \langle \widetilde{\nabla}_u V,W\rangle + \langle V,\widetilde{\nabla}_u W\rangle.$$

(iii) Prove that if ∇ on M is torsion free, then for any $X, Y \in \Gamma(TN)$, we have

$$\widetilde{\nabla}_X d\varphi(Y) - \widetilde{\nabla}_Y d\varphi(X) - d\varphi\left([X, y]\right) = 0.$$

4. (Variation of energy functional: A coordinate-free calculation) Let $\gamma : [a, b] \to M$ be a smooth curve, and

$$\alpha: (-\epsilon, \epsilon) \times [a, b] \to M, \ (s, t) \mapsto \alpha(s, t).$$

be a variation, where (M,g) is a Riemmanian manifold with a Levi-Civita connection.

Recall the energy functional of a curve γ is

$$E(\gamma) := \frac{1}{2} \int_{a}^{b} \left\langle d\gamma \left(\frac{\partial}{\partial t} \right), d\gamma \left(\frac{\partial}{\partial t} \right) \right\rangle dt.$$

For convenience, we denote by

$$W(t) := d\alpha \left(\frac{\partial}{\partial s}\right) (0, t), \text{ and } \dot{\gamma}(t) := d\gamma \left(\frac{\partial}{\partial t}\right).$$

Prove the following variation formula:

$$\frac{d}{ds}_{|_{s=0}} E(\bar{\alpha}(s)) = -\int_{a}^{b} \left\langle W(t), \frac{D\dot{\gamma}}{dt}(t) \right\rangle dt - \left\langle W(a), \frac{D\dot{\gamma}}{dt}(a) \right\rangle + \left\langle W(b), \frac{D\dot{\gamma}}{dt}(b) \right\rangle,$$

where $\bar{\alpha}(s) := \alpha(s, \cdot) : t \mapsto \alpha(s, t).$

5. Let S^n be the sphere with the induced metric g from the Euclidean metric in \mathbb{R}^{n+1} . We denote by $\overline{\nabla}$ the canonical Levi-Civita connection on \mathbb{R}^{n+1} . For any $X, Y \in \Gamma(T\mathbb{S}^n)$, one can extend X, Y to smooth vector field $\overline{X}, \overline{Y}$ on \mathbb{R}^{n+1} , at least near \mathbb{S}^n .

By locality, the vector $\overline{\nabla}_{\overline{X}}\overline{Y}$ at any $p \in \mathbb{S}^n$ depends only on $\overline{X}(p) = X(p)$ and the vectors $\overline{Y}(q) = Y(q)$ for $q \in \mathbb{S}^n$. That is, $\overline{\nabla}_{\overline{X}}\overline{Y}$ is independent of the extension of X, Y we choose. So we will write $\overline{\nabla}_X Y$ instead of $\overline{\nabla}_{\overline{X}}\overline{Y}$ at points on \mathbb{S}^n . We define $\nabla_X Y$ to be the orthogonal projection of $\overline{\nabla}_X Y$ onto the tangent space

of \mathbb{S}^n , i.e.,

$$\nabla_X Y := \overline{\nabla}_X Y - \langle \overline{\nabla}_X Y, \mathbf{n} \rangle \mathbf{n},$$

where **n** is the unit out normal vector on \mathbb{S}^n .

- (i) Prove that ∇ is an affine connection on \mathbb{S}^n .
- (ii) Prove that ∇ is the Levi-Civita connection of (\mathbb{S}^n, g) .